Publications

2024

B. Ngozichukwu, E. Pranada, D. Johnson, and A. Djire “Nanolayered Ti4N3Tx MXene Retains its Electrocatalytic Properties After Prolonged Immersion in SolventsACS Applied Nano Materials, 2024.  https://doi.org/10.1021/acsanm.4c02503

H. Lai, R. Yoo, A. Djire, and P. Balbuena*“Investigation of the Vibrational Properties of 2D Titanium Nitride MXene Using DFTJournal of Physical Chemistry C, 2024. https://doi.org/10.1021/acs.jpcc.3c06717

C. Hsiao, J. Kasten, D. Johnson, B. Ngozichukwu, R. Yoo, S. Lee, A. Erdemir, and A. Djire “Switchable Charge Storage Mechanism via in Situ Activation of MXene Enables High Capacitance and Stability in Aqueous ElectrolytesACS Nano, 2024. https://doi.org/10.1021/acsnano.3c12226

2023

M.T. McDowell, H. Xiong, M. Nazemi, J. Peng, J. L. Lutkenhaus, R. Wang, A. Djire, A. Sankaran, J. Leem, and Y. Gogotsi “Nanomaterials in the future if energy research” Cell Reports Physical Science, 2023. https://doi.org/10.1016/j.xcrp.2023.101605

T. Ma, Y. Yang, D. Johnson, K. Hansen, S. Xiang, R. M. Thakur, A. Djire, and J. Lutkenhaus “Understanding the mechanism of a conjugated ladder polymer as a stable anode for acidic polymer-air batteries” Joule, 2023. https://doi.org/10.1016/j.joule.2023.08.009

R. Yoo, D. Yesudoss, D. Johnson, and A. Djire “A Review on the Application of In-situ Raman Spectroelectrochemistryto Understand the Mechanisms of Hydrogen Evolution Reaction” ACS Catalysis, 2023. https://doi.org/10.1021/acscatal.3c01687 

J. Kasten, C.C. Hsiao, D. Johnson, and A. Djire “Superior Cyclability of High Surface Area Vanadium Nitride in Salt Electrolytes” Nanoscale Advances, 2023. https://doi.org/10.1039/D2NA00810F

R. Yoo and A. Djire “Decoupling the Surface and Bulk Reactivities of MXenes and Catalytic Activity Tuning Through Surface Chemistry Modification” ACS Catalysis, 2023. https://doi.org/10.1021/acscatal.3c00655

A. Badreldin, E. Youssef, A. Djire, A. Abdala, A. Abdel-Wahab “A critical look at alternative oxidation reactions for hydrogen production from water electrolysis” Cell Reports Physical Science, 2023. https://doi.org/10.1016/j.xcrp.2023.101427

E. Uwadiunor, V. Kotasthane, D. Yesudoss, H. Nguyen, E. Pranada, K. Obodo, M. Radovic, and A. Djire “Pt-like Catalytic Activity from an Atomistically Engineered Carbonitride MXene for Sustainable Hydrogen Production” Chem Catalysis, 2023. https://doi.org/10.1016/j.checat.2023.100634

E. Pranada, D. Johnson, R. Yoo, and A. Djire “Subsurface Oxygen Reduction Reaction Activity on Ti2N MXene Revealed by In-situ Raman SpectroelectrochemistrySustainable Energy & Fuels, 2023. https://doi.org/10.1039/D2SE01532C

D. Johnson, E. Pranada, R. Yoo, E. Uwadiunor, B. Ngozichukwu, and A. Djire “Review and Perspective on Transition Metal Electrocatalysts Towards Carbon-Neutral EnergyEnergy & Fuels, 2022. https://doi.org/10.1021/acs.energyfuels.2c03378

D. Johnson, and A. Djire “Effect of pH on the Electrochemical Behavior and Nitrogen Reduction Reaction Activity of Ti2N Nitride MXene” Advanced Materials & Interfaces, 2022. https://doi.org/10.1002/admi.202202147

2022

Uwadiunor, D. Johnson, K. Hansen, and A. Djire “Controlling the Surface Reactivity of Hybrid Ti3CNTx MXene via In-situ ElectrocatalysisChemCatChem, 2022. https://doi.org/10.1002/cctc.202200702

D. Johnson, K. Hansen, R. Yoo, and A. Djire “Elucidating the Charge Storage Mechanism on Ti3C2MXene through In Situ Raman SpectroelectrochemistryChemElectroChem, 2022. https://doi.org/10.1002/celc.202200555

Chau, K., Djire, A., Vaddiraju, S., Khan, F., “Process Risk Index (PRI)– A Methodology to Analyze the Design and Operational Hazards in the Processing Facility”, Process Safety & Environmental Protection, 2022. https://doi.org/10.1016/j.psep.2022.07.049

R. Yoo, E. Pranada, D. Johnson, Z. Qiao, and A. Djire “Review—The Oxygen Reduction Reaction on MXene-Based Catalysts: Progress and ProspectsJournal of the Electrochemical Society, 2022. https://doi.org/10.1149/1945-7111/ac766e

Chau, K., Djire*, A., Khan, F., “Review and analysis of the hydrogen production technologies from a safety perspective”, International Journal of Hydrogen Energy, 2022. https://doi.org/10.1016/j.ijhydene.2022.02.127

D. Johnson, K. Hansen, and A. Djire “Hydrogen Evolution Reaction Mechanism on Ti3C2 MXene Revealed by In-Situ/Operando Raman SpectroelectrochemistryNanoscale, 2022. https://doi.org/10.1039/D2NR00222A

D. Johnson, Z. Qiao, E. Uwadiunor, and A. Djire “Holdups in Nitride MXene’s Development and Limitations in Advancing the Field of MXeneSmall, 2022. https://doi.org/10.1002/smll.202106129

D. Johnson, B. Hunter, J. Christie, C. King, E. Kelley, and A. Djire “Ti2N Nitride MXene Evokes the Mars-van Krevelen Mechanism to Achieve High Selectivity for Nitrogen Reduction ReactionNature Scientific Reports, 2022. https://doi.org/10.1038/s41598-021-04640-7

2021

D. Johnson, Z. Qiao, and A. Djire “Progress and Challenges of Carbon Dioxide Reduction Reaction on Transition Metal Based ElectrocatalystsACS Applied Energy Materials, 2021. https://doi.org/10.1021/acsaem.1c01624

Anwar, S., Khan, F., Zhang, Y., Djire, A., “Recent development in electrocatalysts for hydrogen production through water electrolysis”, International Journal of Hydrogen Energy, 2021. https://doi.org/10.1016/j.ijhydene.2021.06.191

Z. Qiao, D. Johnson and A. Djire “Challenges and opportunities for nitrogen reduction to ammonia on transitional metal nitrides via Mars-van Krevelen mechanismCell Reports Physical Science, 2 (2021), 100438. https://doi.org/10.1016/j.xcrp.2021.100438

A. Djire*, H. Zhang, B. Reinhart, O. C. Nwamba, and N. Neale “Mechanisms of Hydrogen Evolution Reaction in Two-Dimensional Nitride MXenes Using In Situ X-Ray Absorption Spectroelectrochemistry”, ACS Catalysis, (2021) 3128-3136. https://doi.org/10.1021/acscatal.0c05634

Before TAMU (# = student mentored)

2020

A. Djire, X. Wang, C. Xiao, O. Nwamba, M. Mirkin, N. Neale, “Basal Plane Hydrogen Evolution Activity from Mixed Metal Nitride MXenes Measured by Scanning Electrochemical MicroscopyAdv. Funct. Mater., (2020) 2001136. https://doi.org/10.1002/adfm.202001136

2019

A. Djire*, A. Bos#, J. Liu, H. Zhang, E. Miller, and N. Neale “Pseudocapacitive Storage in Nanolayered Ti2NTx MXene using Mg-Ion Electrolyte”, ACS Appl. Nano Mater., 5 (2019) 2785-2795. https://doi.org/10.1021/acsanm.9b00289

A. Djire*, P. Pande, O. T. Ajenifujah#, J. Siegel, A. Deb, Lilin He, A. E. Sleightholme, P. G. Rasmussen, and L. T. Thompson, “Unveiling the Pseudocapacitive Charge Storage Mechanisms of Nanostructured Vanadium Nitride using In-Situ AnalysesNano Energy, 60 (2019) 72-81. https://doi.org/10.1016/j.nanoen.2019.03.003 

A. Djire, H. Zhang, J. Liu, E. Miller, and N. Neale “Electrocatalytic and Optoelectronic Characteristics of the Two-Dimensional Titanium Nitride Ti4N3Tx MXeneACS Appl. Mater. Interfaces, 12 (2019) 11812-11823. https://doi.org/10.1021/acsami.9b01150

2018

A. Djire*, O. T. Ajenifujah#, and L. T. Thompson, “Extent of Pseudocapacitance in High-Surface-Area Vanadium NitridesBatteries & Supercaps, 1, (2018) 1-6. https://doi.org/10.1002/batt.201800050

A. Djire*, J. Siegel, O. T. Ajenifujah#, Lilin He, and L. Thompson, “Pseudocapacitive Storage in High-Surface-Area Molybdenum NitridesNano Energy, 51 (2018) 122-127. https://doi.org/10.1016/j.nanoen.2018.06.045 

2017

A. Djire, J. Y. Ishimwe#, S. Choi, and L. T. Thompson, “Enhanced Performance for Early Transition-Metal Nitrides via Pseudocapacitance in Protic Ionic Liquid ElectrolytesElectrochem. Commun., 77 (2017) 19-23. https://doi.org/10.1016/j.elecom.2017.02.001 

2015

P. Pande, A. Deb, A. E. Sleightholme, A. Djire, P. G. Rasmussen, J. E. Penner-Hahn, and L. T. Thompson, “Pseudocapacitive Charge Storage via Hydrogen Insertion for Molybdenum NitridesJ. Power Sources, 289 (2015) 154-159. https://doi.org/10.1016/j.jpowsour.2015.03.171

A. Djire, O. T Ajenifujah#, A. E. Sleightholme, P. G. Rasmussen, and L. T. Thompson, “Effects of Surface Oxygen on Charge Storage in High Surface Area Early Transition-Metal Carbides and NitridesJ. Power Sources, 275 (2015) 159-166. https://doi.org/10.1016/j.jpowsour.2014.10.161